
Text Editing
on Unix

Shiquan Su
National Institute for Computational Science

User Assistant Group

As part of the contest that was conducted a
while back, I got around 200 responses
from the geeky readers who choose their
favorite Linux text editor.

Based on this data, the top spot in the best
Linux text editor goes to…

Set up a text example to try different text editors:

1, google: mpi c++ hello world example
2, choose the second one from “UMBC”
3, copy and paste the source code to example.cpp

GNU nano

nano was first created in 1999 with the name TIP (This isn't Pico), by Chris
Allegretta. His motivation was to create a free software replacement for Pico,
which was not distributed under a free software license. The name was
changed to nano on January 10, 2000 to avoid a naming conflict with the
existing Unix utility tip. The name comes from the system of SI prefixes, in
which nano is 1000 times larger than pico, In February 2001, nano became a
part of the GNU Project.

nano implements some features that Pico lacks, including colored text,
regular expression search and replace, smooth scrolling, multiple buffers,
rebindable key support, and (experimental) undoing and redoing of edit
changes.

On August 11, 2003, Chris Allegretta officially handed the source code
maintenance for nano to David Lawrence Ramsey. On December 20, 2007,
Ramsey stepped down as nano's maintainer.

History:

nano, like Pico, is keyboard-oriented, controlled with control keys. For
example, ⎈ Ctrl+O saves the current file; ⎈ Ctrl+W goes to the search
menu. Nano puts a two-line "shortcut bar" at the bottom of the screen, listing
many of the commands available in the current context. For a complete list,
⎈ Ctrl+G gets the help screen.

Unlike Pico, nano uses meta keys to toggle its behavior. For example, ◆
Meta+S toggles smooth scrolling mode on and off. Almost all features that
can be selected from the command line can be dynamically toggled.

For example, the Meta key on MacBook Pro is the ‘esc’ key.

Control keys:

^G (F1) Display this help text
^X (F2) Close the current file buffer / Exit from nano
^O (F3) Write the current file to disk

^R (F5) Insert another file into the current one
^W (F6) Search for a string or a regular expression
^Y (F7) Move to the previous screen
^V (F8) Move to the next screen

^K (F9) Cut the current line and store it in the cutbuffer
^U (F10) Uncut from the cutbuffer into the current line
^C (F11) Display the position of the cursor
^T (F12) Invoke the spell checker, if available

^_ (F13) (M-G) Go to line and column number
^\ (F14) (M-R) Replace a string or a regular expression
^^ (F15) (M-A) Mark text at the cursor position
 (F16) (M-W) Repeat last search

Command list (1/4):

Command list (2/4):

M-^ (M-6) Copy the current line and store it in the cutbuffer

^F Move forward one character
^B Move back one character
^Space Move forward one word
M-Space Move back one word
^P Move to the previous line
^N Move to the next line

^A Move to the beginning of the current line
^E Move to the end of the current line
M-((M-9) Move to the beginning of the current paragraph
M-) (M-0) Move to the end of the current paragraph
M-\ (M-|) Move to the first line of the file
M-/ (M-?) Move to the last line of the file

M-] Move to the matching bracket
M-- (M-_) Scroll up one line without scrolling the cursor
M-+ (M-=) Scroll down one line without scrolling the cursor

M-< (M-,) Switch to the previous file buffer
M-> (M-.) Switch to the next file buffer

M-V Insert the next keystroke verbatim
^I Insert a tab at the cursor position
^M Insert a newline at the cursor position
^D Delete the character under the cursor
^H Delete the character to the left of the cursor
M-T Cut from the cursor position to the end of the file

M-D Count the number of words, lines, and characters
^L Refresh (redraw) the current screen

Command list (3/4):

M-X Help mode enable/disable
M-C Constant cursor position display enable/disable
M-O Use of one more line for editing enable/disable
M-S Smooth scrolling enable/disable
M-P Whitespace display enable/disable
M-Y Color syntax highlighting enable/disable

M-H Smart home key enable/disable
M-I Auto indent enable/disable
M-K Cut to end enable/disable
M-L Long line wrapping enable/disable
M-Q Conversion of typed tabs to spaces enable/
disable

M-B Backup files enable/disable
M-F Multiple file buffers enable/disable
M-M Mouse support enable/disable
M-N No conversion from DOS/Mac format enable/
disable
M-Z Suspension enabled/disabled

Command list (4/4):

GNU Emacs

GNU Emacs is an extensible, customizable text editor—and more. At its core is
an interpreter for Emacs Lisp, a dialect of the Lisp programming language with
extensions to support text editing. The features of GNU Emacs include:

•  Content-sensitive editing modes, including syntax coloring, for a variety of file

types including plain text, source code, and HTML.

•  Complete built-in documentation, including a tutorial for new users.

•  Full Unicode support for nearly all human languages and their scripts.

•  Highly customizable, using Emacs Lisp code or a graphical interface.

•  A large number of extensions that add other functionality, including a project
planner, mail and news reader, debugger interface, calendar, and more. Many
of these extensions are distributed with GNU Emacs; others are available
separately.

Help Commands

* C-h help-command: first character in lots of useful help commands

* C-h t help-with-tutorial: command to run the tutorial
 C-h i information: describes most of the emacs commands in man
style pages
 C-h k describe-key: tells you what a particular key stroke does
* C-h a command-apropos: prompts for a string and
 then searches for all emacs commands that contains that string
 ESC ? also does command-apropos
* C-h ? help-for-help: describes how to use the help facilities

File Reading and Writing Commands

* C-x C-f find-file: first prompts for a filename and
 then loads that file into a editor buffer of the same name
* C-x C-s save-buffer: saves the buffer into the associated filename
 C-x C-w write-named-file: prompts for a new filename and writes the
buffer into it

Cursor/Screen Movement Commands

* C-a move cursor to (at) beginning-of-line
 C-e move cursor to end-of-line
* C-f move cursor forward one character
* C-b move cursor backward one character
* C-n move cursor to next line
* C-p move cursor to previous line
 C-v scroll file forward by one screenful
 ESC v scroll file backward by one screenful
* ESC < go to beginning-of-buffer
* ESC > go to end-of-buffer
 ESC f move cursor forward one word
 ESC b move cursor backward one word

Copy and Delete Commands

 C-d delete-char: delete character under cursor
 ESC d delete-word: delete from cursor to end of word immediately ahead of the
cursor
* C-k kill-line: delete the rest of the current line
* C-@ set-mark-command: mark is used to indicate the beginning of an area of
text to be yanked
* C-w kill-region: delete the area of text between the mark and the current cursor
position
* C-y yank: insert at current cursor location whatever was most recently deleted
 ESC w copy-region-as-kill: copy area between mark and cursor into kill-buffer
 so that it can be yanked into someplace else

Search Commands

* C-s isearch-forward: prompts for text string and
 then searches from the current cursor position forwards in the buffer
 C-r isearch-backward: like isearch-forward,
 but searches from the current cursor position to end of buffer for text string
 ESC % query-replace: prompts for a search string and
 a string with which to replace the search string

Window and Buffer Commands

 C-x 0 zero-window: deletes current window
 C-x 2 double-window: splits current window into two parts,
 allowing you to edit at two different locations in the same file
 or permitting you to view two different files at the same time
 C-x b switch-to-buffer: display a different buffer on the screen
 C-x o other-window: move the cursor to the other window
 (assuming that you have two windows/buffers open at once
* C-x C-b list-buffers: lists those buffers currently loaded into emacs

Exiting Emacs, Fixing Mistakes and Other Important Stuff

•  C-x C-c save-buffers-kill-emacs: when you are finished editing, to save the
edited but unsaved buffers and to return you to the UNIX prompt

 C-g keyboard-quit: if while typing a command you make a mistake and want
to stop, this aborts a command in progress

 C-u universal-argument: if you want to do a command several times, type
this command followed by a number (for the number of times) followed by the
command you wish repeated

•  C-x u undo: undoes the last command typed, in case you made a mistake

 ESC x execute-extended-command: prompts for the name of an emacs
command; allows you to execute a command if you know roughly what it is called
but cannot remember the key strokes for it

vi

Over the years since its creation, vi became the de facto standard Unix editor
and a nearly undisputed number one editor until the rise of Emacs after about
1984. The Single UNIX Specification specifies vi, so every conforming system
must have it.

A 2009 survey of Linux Journal readers found that vi was the most widely used
text editor among respondents, beating gedit, the second most widely used
editor by nearly a factor of two (36% to 19%).

vi is a screen-oriented text editor originally created for the Unix operating
system. The portable subset of the behavior of vi and programs based on it,
and the ex editor language supported within these programs, is described by
(and thus standardized by) the Single Unix Specification and POSIX.

About VI

VI editor

•  Used to create a file

•  2 modes: Insert and View

•  Press ESC to be in View mode

•  Press letter “i” to be in insert mode

•  To save your work press ESC and “:wq”

•  To quit without saving press ESC and “:q!”

•  Webpage for help : google “vi editor summary pdf” or
www.amath.colorado.edu/computing/unix/vi/

Star%ng	 vi	 –	 the	 vi	 material	 are	 copied	 from	 the	
webpage	

Opening	 an	 exis+ng	 file	
vi	 filename	

Crea+ng	 a	 new	 file	
vi	 filename	
	 	

In your workshop directory, create a new file called mysong

vi mysong!

Vi	 Modes	 of	 Opera%on	

–  Command Mode
Allows the entry of commands to manipulate text
Default mode when vi starts
Use Escape key to move into command mode

–  Insert Mode and
Puts anything you type into the current file
To get into insert mode, commands are

a (append) and i (insert)

1.  Use the i command to move into insert mode
 (Press i key).
2. Attempt to type in the title of your favorite song.
3. Use the Esc key to move to command mode.

Exi%ng	 the	 Vi	 Editor	

:q	 	 	 	 Quit	 the	 editor	
:q!	 	 	 Quit	 without	 saving	 changes	 to	 the	 file	

1.  Use the Esc key to make sure you are in command mode.
2.  Use the :q command to try to quit vi

3.  Use the :q! command to force quit without saving (Enter :q!).

Saving	 Changes	 in	 vi	

:wq	 	 	 Write/save	 changes	 and	 quite	
:w	 	 	 Write/Save	 changes,	 but	 don’t	 quit	

1.  Type vi mysong to re-edit your song file.
2.  Use the i command to move into insert mode (Press i key).
3.  Retype the title of your favorite song.
4.  Use the Esc key to move to command mode.
5.  Use the :w command to write/save your edits to file.

6.  Use the i command to enter insert mode (Enter i).
7.  Type Title: somewhere on the line with the song title.
8.  Use the Esc key to move to command mode.
9.  Use the :wq command to save and quit vi .

Vi	 Editor	

•  How to type commands in command mode
[count] command [where]

count : Its a number

where : Specifies how many lines or how much of the

document the command affect. It can also be any
command that moves the cursor.

Moving	 the	 cursor	 in	 vi	

h	 key 	 	 	 move	 cursor	 to	 the	 le/	 one	 posi+on	
l	 key 	 	 	 move	 cursor	 right	 one	 posi+on	
j	 key 	 	 	 move	 cursor	 down	 one	 line	
k	 key 	 	 	 move	 cursor	 up	 one	 line	

1.  Type vi mysong to re-edit your song file.
2.  Use the l command several times to move cursor to the far right
3.  Use the a command to move into append mode (Press a key).
4.  Use the Enter key to start a new line of text.
5.  Type: Artist: and then the name of the artist
6.  Use the Esc key to move to command mode .
7.  Practice moving cursor up, down, left,

and right with h,l,j,k keys.

8.  .

Simple	 vi	 edi%ng	 commands	

r 	 	 	 	 	 	 replace	 one	 character	 under	 the	 cursor	
x	 	 	 	 	 	 delete	 1	 character	 under	 the	 cursor.	
2x	 	 	 	 delete	 2	 characters	 (3x,	 etc.)	
u	 	 	 	 	 	 undo	 the	 last	 change	 to	 the	 file	

	

1.  Use the Esc key to make sure
you are still in command mode.

2.  Reposition your cursor and
use the a, l, r and x commands
to repair any typos in your
title and artist, and change
the title to ALL CAPS

3.  Use the :w command to save your changes.

Cu?ng	 text	 in	 Vi	

d^	
	 	 Deletes	 from	 current	 cursor	 posi+on	 to	 the	 	 	
	 beginning	 of	 the	 line	

d$	
	 	 Deletes	 from	 current	 cursor	 posi+on	 to	 the	 	
	 	 end	 of	 the	 line	

Dw	
	 	 Deletes	 from	 current	 cursor	 posi+on	 to	 the	
	 	 end	 of	 the	 word	

dd	
	 	 Deletes	 one	 line	 from	 current	 cursor	 posi+on.	 	 Specify	
count	 to	 delete	 many	 lines.	

Cu?ng	 	 &	 Yanking	 Text	 in	 Vi	

dd Delete (cut) 1 line from current cursor position
2dd Delete (cut) 2 lines (3dd to cut 2 lines, etc.)
p paste lines below current line

1.  Move cursor to top line and type dd to cut the title line
2.  Use the p command to paste the title line below the

artist line
3.  Use the p command to paste it again.

Cu?ng	 	 &	 Yanking	 Text	 in	 Vi	

yy 	 	 yank	 (copy)	 a	 single	 line	 	
2yy	 yank	 (copy)	 2	 lines	 (3yy	 to	 copy	 3	 lines,	 etc.)	
P 	 	 	 paste	 lines	 before	 current	 line	

1.  Move cursor to first of the 2 title lines and
type 2yy to yank/copy 2 lines

2.  Move cursor to the first line, then use the capital P command to paste the
two yanked links above the artist

Vi	 Editor	

To	 go	 to	 a	 specific	 line	 in	 the	 file	
:linenumber	

1.  Go to the 3rd line by typing :3
2.  Go to the 1st line by typing :1
3.  Go to the last line by typing G

Vi	 string/search	

/[paAern]	 	 search	 forward	 for	 the	 paAern	

?[paAern]	 	 search	 backward	 for	 the	 paAern	

n 	 	 	 	 	 	 	 	 	 search	 for	 the	 next	 instance	 of	 a	 string	

1.  Search forward for the next line containing the string Title
by typing /Title

2.  Search forward for the next instance of Title by typing n
3.  Search backward for the most recent instance of Title by

typing ?Title
4.  Search backward for the next most recent instance of Title

by typing n

More	 commands	

yl
 yank a single character. Specify count to yank more characters

yw
 yank a single word. Specify count to yank more words

d^
 Deletes from current cursor position to the

 beginning of the line
d$

 Deletes from current cursor position to the
 end of the line

Dw
 Deletes from current cursor position to the
 end of the word

THE END
THANK YOU

